Comet Interceptor will be a new type of mission, launched before its primary target has been found.
The only way to encounter dynamically new comets or interstellar objects is to discover them inbound with enough warning to direct a spacecraft to them. The time between their discovery, perihelion, and departure from the inner Solar System has until recently been very short, historically months to a year: far too little time to prepare and launch a spacecraft. This timescale is, however, lengthening rapidly, with recent advances allowing observational surveys to cover the sky more deeply, coherently, and rapidly, such as the current Pan-STARRS and ATLAS surveys, and the Large Synoptic Survey Telescope under construction in Chile, LSST (www.lsst.org).
Long Period Comets are now discovered much further away, considerably more than a year pre-perihelion; e.g. C/2017 K2 (Pan-STARRS) was discovered beyond Saturn’s orbit in 2017, and will pass perihelion in 2022. From 2023, LSST will conduct the most sensitive search for new comets ever, providing a true revolution in understanding their populations, and making this mission possible.
Comet Interceptor will be launched with the ESA ARIEL spacecraft in 2028, and delivered to the Sun-Earth Lagrange Point L2. It will be a multi-element spacecraft comprising a primary platform which also acts as the communications hub, and sub-spacecraft, allowing multi-point observations around the target. All spacecraft will be solar powered. The spacecraft will remain connected to each other at L2, where they will reside until directed to their target. The mission cruise phase will last months to years.
Before the encounter, the spacecraft will separate into its separate elements, probably a few weeks pre-flyby. For very active comets, separation will be earlier, to maximize separation of the spacecraft elements, whilst for low activity targets, separation will occur only a few days before the encounter takes place.
The Executive Summary of our Phase-2 proposal to ESA is available for download.
The only way to encounter dynamically new comets or interstellar objects is to discover them inbound with enough warning to direct a spacecraft to them. The time between their discovery, perihelion, and departure from the inner Solar System has until recently been very short, historically months to a year: far too little time to prepare and launch a spacecraft. This timescale is, however, lengthening rapidly, with recent advances allowing observational surveys to cover the sky more deeply, coherently, and rapidly, such as the current Pan-STARRS and ATLAS surveys, and the Large Synoptic Survey Telescope under construction in Chile, LSST (www.lsst.org).
Long Period Comets are now discovered much further away, considerably more than a year pre-perihelion; e.g. C/2017 K2 (Pan-STARRS) was discovered beyond Saturn’s orbit in 2017, and will pass perihelion in 2022. From 2023, LSST will conduct the most sensitive search for new comets ever, providing a true revolution in understanding their populations, and making this mission possible.
Comet Interceptor will be launched with the ESA ARIEL spacecraft in 2028, and delivered to the Sun-Earth Lagrange Point L2. It will be a multi-element spacecraft comprising a primary platform which also acts as the communications hub, and sub-spacecraft, allowing multi-point observations around the target. All spacecraft will be solar powered. The spacecraft will remain connected to each other at L2, where they will reside until directed to their target. The mission cruise phase will last months to years.
Before the encounter, the spacecraft will separate into its separate elements, probably a few weeks pre-flyby. For very active comets, separation will be earlier, to maximize separation of the spacecraft elements, whilst for low activity targets, separation will occur only a few days before the encounter takes place.
The Executive Summary of our Phase-2 proposal to ESA is available for download.
-
Spacecraft A
-
CoCa
-
MIRMIS
-
DFP
<
>
Spacecraft A will be provided by ESA, and will act as the primary spacecraft for the entire mission, and the primary communications hub with Earth. Spacecraft B1 and B2 will be attached to Spacecraft A until shortly before the comet encounter.
This will carry three instruments - click on the tabs to learn more about them and their team.
This will carry three instruments - click on the tabs to learn more about them and their team.
-
Spacecraft B1
-
PS
-
WAC/NAC
-
HI
<
>
-
Spacecraft B2
-
EnVisS
-
OPIC
-
DFP
<
>